tester

Verwendung von Cookies

Wir verwenden Cookies, um Ihnen die Navigation auf unserer Website komfortabler zu machen und sie zu analysieren. Sie können alle akzeptieren, ablehnen oder durch Drücken der entsprechenden Schaltflächen Ihre individuellen Einstellungen vornehmen. Bitte beachten Sie, dass das Ablehnen von Cookies Ihr Navigationserlebnis beeinträchtigen kann. Weitere Informationen finden Sie in unserer Cookie-Richtlinie.

Cookies konfigurieren

Cookies sind ein wesentlicher Bestandteil der Funktionsweise unserer Website. Der Hauptzweck von Cookies besteht darin, Ihr Surferlebnis komfortabler und effizienter zu gestalten sowie unsere Dienstleistungen und die Website selbst weiter zu verbessern. Hier erhalten Sie alle Informationen über die von uns verwendeten Cookies und können diese nach Ihren Wünschen aktivieren oder deaktivieren. Davon ausgenommen sind solche Cookies, die für den Betrieb der Website unbedingt erforderlich sind. Bei einigen Cookies kann Ihr Erlebnis auf der Website und deren Betrieb beeinträchtigt werden, wenn Sie diese deaktivieren. Weitere Informationen finden Sie in unserer Cookie-Richtlinie.

Unbedingt (technisch) notwendige Cookies

Diese Cookies sind für das Funktionieren der Website unerlässlich und können in unseren Systemen nicht deaktiviert werden. Sie bilden im Allgemeinen die Grundlage solcher Aktionen, die Sie auf unserer Website durchführen können, also etwa Dienstleistungen bestellen, Ihre Datenschutzeinstellungen festlegen, sich Anmelden oder Formulare ausfüllen. Sie können Ihren Webbrowser so einstellen, dass er diese Cookies blockiert oder Sie auf sie hinweist, doch einige Teile der Website funktionieren nicht, wenn sie blockiert werden. Informationen zu Cookies

Analytische Cookies

Anhand dieser Cookies können wir die Besuche zählen und Traffic-Quellen bestimmen. Damit messen wir die Leistung unserer Website und können sie verbessern. Sie helfen uns herauszufinden, welche Seiten am beliebtesten und welche am wenigsten beliebt sind, und wir können sehen, wie sich die Besucher auf der Website bewegen. Alle von diesen Cookies gesammelten Daten werden aggregiert und sind daher anonym. Wenn Sie diese Cookies nicht zulassen, erfahren wir nicht, wann Sie unsere Website besucht haben. Informationen zu Cookies

Cookies an Dritte

Diese Cookies werden zur Analyse Ihrer Aktivitäten verwendet, um Ihnen personalisierte Werbung zu zeigen. Informationen zu Cookies

Akzeptieren Ablehnen Cookies konfigurieren Auswahl bestätigen
Suche
×
Anmerkungen
Suche
Keine Notizen
  • Seismic and volcanic risk
  • Um Stift anzupassen, drücken Sie Alt + Pfeil nach unten
  • Um Textmarker anzupassen, drücken Sie Alt + Pfeil nach unten

    Thema ändern

    Fehler - Bitte überprüfen Sie Ihre Internetverbindung...
    Zurück

    Blink Help

    x
    Fehler - Bitte überprüfen Sie Ihre Internetverbindung...

    Wie können wir Ihnen helfen?

    Keine Ergebnisse

    Vollständiges Handbuch ansehen

    Sie konnten das Gesuchte nicht finden?

    Beschreiben Sie Ihre Frage so detailliert wie möglich. Geben Sie uns die Klasse, das Zugangsgerät, den Lizenzcode, den betroffenen Benutzer und Browser an oder ob es Ihnen in der App passiert:

    Dicke:
    Textgröße:
    Filter
      keine Ressourcen zugeordnet
      Textgröße:
      Überprüfungsmodus

      Überprüfungsmodus

      Seismic and volcanic risk
      Internal geological processes
      Ohne Hintergrundton
      Logo

      5. SEISMIC AND VOLCANIC RISK

      5. SEISMIC AND VOLCANIC RISK

      /useruploads/ctx/a/19028819/r/s/2764769/AU-0S3GY1-01-020.mp3?idcurso=453599Talking book 

       

      Geological risks are threats originating from geological processes that cause damage to the lives of human beings, their belongings8 and buildings.

       

      The risk not only depends on the intensity and the frequency of the phenomenon, but also on the density and size of the population and the type of infrastructures in the place affected.

      Risk = danger (Probability that the phenomenon happens in this place at a certain time.) × vulnerability (Value of the damage that people, or their belongings, can suffer as a consequence of the phenomenon).

      So, in an uninhabited area, the risk is zero. However, in an area with medium danger but a very high population density and poorly designed infrastructures, the risk can be the similar to an area with high seismic danger that has buildings designed to resist earthquakes.

      Earthquakes and explosive volcanic eruptions are the internal geological phenomena that cause the most victims and material damage.

      Video 3: Mount Ontake survivors

      5.1. Seismic risk

      /useruploads/ctx/a/19028819/r/s/2764769/AU-0S3GY1-01-021.mp3?idcurso=453599Talking book 

      Every year there are close to a million earthquakes; about 150000 are felt by the population and the rest only by seismographs. To evaluate the strength of earthquakes, there are two types of measurements: magnitude and intensity.

      • The magnitude of an earthquake measures the energy released in the hypocentre. To express this, we use the Richter scale, which is exponential. For each unit that goes up on the scale, the energy released is multiplied by 30. For example, an earthquake with a magnitude of 6 on the Richter scale releases 30 times more energy than one with a magnitude 5.
      • The intensity evaluates the damage caused by the earthquake in a certain area. Nowadays, it is measured on a European macroseismic scale EMS-98, that has twelve levels, from1 (‘not felt') to 12 (‘completely devastating').

      An earthquake will only have one value of magnitude, but its intensity will vary depending on the area where it is measured: the maximum is found in the epicentre and decreases further away from it.

      The main risk of earthquakes is the movement of the ground and the collapse of buildings, as occurred in 1976 in Tangshan, China, where more than half a million people died. Other historic examples of the effects of an earthquake are the following:

      Landslides of mud and rocks like the one that buried the Peruvian city of Yungay in 1970, after the earthquake of Ancash. 
      Fires that burn out of control because underground gas and water pipes are destroyed, like the earthquake that completely destroyed San Francisco in 1906. 
      Tsunamis are caused by large earthquakes that affect the ocean floor. The most recent and devastating tsunamis occurred in Indonesia (2004) and in Japan (2011).

       

       

      5.1.1. Seismic risk in Spain

      /useruploads/ctx/a/19028819/r/s/2764769/AU-0S3GY1-01-022.mp3?idcurso=453599Talking book 

      The Iberian Peninsula is situated near the contact region of the African and the Eurasian plates, although it is not a very active area.

      As a result, there is a moderate seismic risk, less than in most other Mediterranean countries. This means that there are earthquakes which are felt by the population and more rarely, others that cause considerable damage.

      Catastrophic earthquakes in this area cannot be ruled out, such as the one in Arenas del Rey (Granada) in 1884, which caused more than 1 000 deaths, or the most recent one in Lorca (Murcia) in 2011, which caused nine deaths.

      5.2. Volcanic risk

      /useruploads/ctx/a/19028819/r/s/2764769/AU-0S3GY1-01-023.mp3?idcurso=453599Talking book 

      The risks associated with volcanic activity are quite varied, as you can see in the following figures and examples:

      Risks associated with volcanic activity
      • The eruption of Laki (Iceland) in 1783-84 released so much ash and gases into the atmosphere that temperatures in the northern hemisphere went down substantially, causing losses of crops and starvation.
      • On 27 August 1883 the explosion of Krakatoa in Indonesia produced a tsunami that caused 36000 deaths.
      • On 8 May 1902 a pyroclastic flow from the volcano Mount Pelèe destroyed the city of St. Pierre (Martinique Island) killing 28000 people.
      • On 13 November 1985 a small eruption in the Nevado del Ruiz volcano (Colombia) melted part of snowy summit causing a lahar that buried 23000 people.
      • On 21 August 1986 a cloud of carbon dioxide from a volcano caused the death of 1746 people due to suffocation in Cameroon.
      • On 17 January 2002 the streams of lava from the Nyiragongo volcano caused close to one hundred deaths in the city of Goma (Zaire).

      5.3. PREDICTING EARTHQUAKES AND VOLCANOES

      /useruploads/ctx/a/19028819/r/s/2764769/AU-0S3GY1-01-025.mp3?idcurso=453599Talking book 

      We are still very far away from being able to predict the day and time that the next earthquake will occur. We do not even have reliable indicators that tell us how close it is. But we do know that where there have already been earthquakes of some intensity every certain amount of time, they will continue to happen with a similar intensity and regularity.

      The elastic rebound theory can help us to have an approximate idea of the areas of a fault that are susceptible to displacement soon.

      Earthquake prediction is based on measuring the accumulated pressure in the rock near the faults or detecting the microfractures that sometimes appear before the main displacement. These microfractures produce changes in the magnetic and electrical properties of the rocks and allow certain gases to escape, such as radon.

      Signs of possible earthquakes

       

      Volcanic eruptions can be predicted with a certain amount of accuracy, provided we have the instruments and people monitoring them. This is done by registering the signs that magma is accumulating in the magma chamber and then the factors that allow it to rise towards the surface. When this occurs, a series of micro-earthquakes known as volcanic tremor take place.

      Another important source of indicators is the measurement of the amount, composition and temperature of the gases and thermal springs released by the volcano before eruption.

      Video 4: Volcano hazards 

      5.4. Seismic and volcanic prevention

      /useruploads/ctx/a/19028819/r/s/2764769/AU-0S3GY1-01-026.mp3?idcurso=453599Talking book 
      Prevention is defined as the combination of the measures adopted to reduce the risks of earthquakes and volcanic eruptions.
      Tsunami warning system

      Although we cannot stop earthquakes or volcanic eruptions, it is possible to take decisions that reduce the risk or take measures that lessen the damage caused. The risk formula doesn't include the reduction of the danger but it does include the reduction of vulnerability. For example, we can lessen seismic risk by not constructing buildings on poorly consolidated sediments, or by reinforcing them with iron or reinforced concrete for better resistance to the movement of the ground.

      The first step is to determine the seismic or volcanic risk in the area and make maps showing the danger. Then, prevention is worked with in three areas in order to reduce the vulnerability or exposure to that phenomenon:

      • Territorial planning by consulting seismic hazard maps and avoiding, for example, building in areas of high risk, especially buildings such as hospitals, power plants and schools.
      • Earthquake resistant design used in buildings and infrastructures and the reinforcement of existing structures to reduces seismic risk.
      • Planning before emergencies increases the capacity of the population to respond and the methods of self-protection against earthquakes and volcanic eruptions. In the case of volcanoes, the most adequate measure is to plan evacuation of risk zones before the eruption. For this, there are three levels of alert, represented in the form of a traffic light.
      Key concepts
      • Geological risks are threats that come from geological processes that cause loss of human lives and their belongings and buildings.
      • Although these processes cannot be prevented and are difficult to predict, the risk can be reduced with adequate preventative measures.

       

       

      Key structure

      conjunction not only... but also:

      The risk not only depends on... but also on...

       
      Seismic and volcanic risk
      Internal geological processes
      Ohne Hintergrundton
      Logo

      Activity 35

      Find out if an earthquake with a magnitude of 6 is twice as strong as one with a magnitude of 3. If not, how much stronger is it? Select the right answer. 

      • Yes, the statement is correct. An earthquake with a magnitude of 6 is twice as strong as one with a magnitude of 3.

      • Richtige Antwort
        Falsche Antwort
      • No, sería 30 x 3 = 90 la energía que liberará un seísmo de magnitud 6 ya que es tres veces más fuerte de magnitud.

      • Richtige Antwort
        Falsche Antwort
      • No. It would be 30 x 30 x 30 = 27 000. It would release 27 000 times more energy.

      • Richtige Antwort
        Falsche Antwort

      Fertig
      Seismic and volcanic risk
      Internal geological processes
      Ohne Hintergrundton
      Logo

      Activity 36

      Explain how the following factors will affect personal and material damage caused by an earthquake:

      a) Focal depth of the earthquake
      b) Day and time when it occurs
      c) Type of substratum (hard rock or poorly consolidated sediment)
      d) Type of buildings

      Fertig
      Seismic and volcanic risk
      Internal geological processes
      Ohne Hintergrundton
      Logo

      Activity 37

      /useruploads/ctx/a/19028819/r/s/6374679/AU-0S3GY1-01-024.mp3?idcurso=453599Look at the map. Listen and answer the questions. 
      a)
      b)
      Seismic risk in Spain: maximum intensity expected in a 500 year period (source:IGN)

      Fertig
      Seismic and volcanic risk
      Internal geological processes
      Ohne Hintergrundton
      Logo

      Activity 38

      Explain why lava flows are an important volcanic risk.

      Fertig
      Seismic and volcanic risk
      Internal geological processes
      Ohne Hintergrundton
      Logo

      Activity 39

      The VEI is used to measure the danger of an eruption. Look at the graph and answer the following questions. 

      • What two factors determine the VEI?
      • Richtige Antwort
        Falsche Antwort
      • What is the maximum height that ash clouds can reach?
      • Richtige Antwort
        Falsche Antwort
      VEI (volcanic explosivity index)

      Fertig
      Seismic and volcanic risk
      Internal geological processes
      Ohne Hintergrundton
      Logo

      Activity 40

      Look at the diagrams and explain how an earthquake is produced according to this theory.

      Elastic rebound theory

      Fertig
      Seismic and volcanic risk
      Internal geological processes
      Ohne Hintergrundton
      Logo

      Activity 41

      Find out what instruments are used to predict earthquakes and volcanic eruptions. Then select the instruments used from the following list. 

      • flow meter

      • Richtige Antwort
        Falsche Antwort
      • accelerometer

      • Richtige Antwort
        Falsche Antwort
      • seismograph

      • Richtige Antwort
        Falsche Antwort
      • resistivity and magnetometer

      • Richtige Antwort
        Falsche Antwort
      • radon gas meter

      • Richtige Antwort
        Falsche Antwort
      • audiometer

      • Richtige Antwort
        Falsche Antwort
      • inclinometer

      • Richtige Antwort
        Falsche Antwort
      • voltmeter

      • Richtige Antwort
        Falsche Antwort
      • GPS

      • Richtige Antwort
        Falsche Antwort
      • pedometer

      • Richtige Antwort
        Falsche Antwort

      Fertig
      Seismic and volcanic risk
      Internal geological processes
      Ohne Hintergrundton
      Logo

      Activity 42

      Investigate the difference between earthquake precursors and aftershocks. What importance do each of these have? Then categorise the different sentences by placing them under their correspongding section. 

      precursors

      precursors

      aftershocks

      aftershocks

        /*%%SmartyNocache:524886748693bc9960e1009_12601499%%*/smarty->registered_plugins[Smarty::PLUGIN_FUNCTION]['textweb'][0], array( array('name'=>"slide_classify_initial_group",'value'=>"Ninguno",'value_en'=>"Reset"),$_smarty_tpl ) );?> /*/%%SmartyNocache:524886748693bc9960e1009_12601499%%*/ precursors aftershocks

      Fertig
      Seismic and volcanic risk
      Internal geological processes
      Ohne Hintergrundton
      Logo

      Activity 43

      Discuss the difference between our knowledge and techniques to predict volcanic eruptions and earthquakes.

      Fertig
      Seismic and volcanic risk
      Internal geological processes
      Ohne Hintergrundton
      Logo

      Activity 44

      The earthquake that hit India in 1993, of magnitude 6.4 on the Richter scale, caused 30 000 deaths. A year later, another earthquake of the same magnitude occurred in California, but only caused 63 deaths, although it also affected a densely populated area. How can you explain this difference?

      Fertig
      Seismic and volcanic risk
      Internal geological processes
      Ohne Hintergrundton
      Logo

      Activity 45

      Complete the table to compare the different damages associated with both earthquakes and volcanic eruptions.

      damages associated with volcanoes

      damages associated with volcanoes

      damages associated with earthquakes

      damages associated with earthquakes

        /*%%SmartyNocache:524886748693bc9960e1009_12601499%%*/smarty->registered_plugins[Smarty::PLUGIN_FUNCTION]['textweb'][0], array( array('name'=>"slide_classify_initial_group",'value'=>"Ninguno",'value_en'=>"Reset"),$_smarty_tpl ) );?> /*/%%SmartyNocache:524886748693bc9960e1009_12601499%%*/ damages associated with volcanoes damages associated with earthquakes

      Fertig
      Seismic and volcanic risk
      Internal geological processes
      Ohne Hintergrundton
      Logo

      Activity 46

      Why is it so important in the prediction and prevention of earthquakes to know in detail the history of earthquakes on a fault line?

      Fertig
      Seismic and volcanic risk
      Internal geological processes
      Ohne Hintergrundton
      Logo

      Activity 47

      Discuss the reasons why earthquakes have been a much more destructive geological phenomenon than volcanic eruptions.

      Fertig

      ,
      Sie haben die Einheit beendet.

      Unten sehen Sie, wie viel Zeit Sie gebraucht und welche Punktzahl Sie erreicht haben.

      Zeit

      Punktzahl

      1. 1
      2. 2
      3. 3
      4. 4
      5. 5
      6. 6
      7. 7
      8. 8
      9. 9
      10. 10
      11. 11
      12. 12
      13. 13
      14. 14
        Radiergummi
        Rich-Text-Editor
        Schließen