tester

Verwendung von Cookies

Wir verwenden Cookies, um Ihnen die Navigation auf unserer Website komfortabler zu machen und sie zu analysieren. Sie können alle akzeptieren, ablehnen oder durch Drücken der entsprechenden Schaltflächen Ihre individuellen Einstellungen vornehmen. Bitte beachten Sie, dass das Ablehnen von Cookies Ihr Navigationserlebnis beeinträchtigen kann. Weitere Informationen finden Sie in unserer Cookie-Richtlinie.

Cookies konfigurieren

Cookies sind ein wesentlicher Bestandteil der Funktionsweise unserer Website. Der Hauptzweck von Cookies besteht darin, Ihr Surferlebnis komfortabler und effizienter zu gestalten sowie unsere Dienstleistungen und die Website selbst weiter zu verbessern. Hier erhalten Sie alle Informationen über die von uns verwendeten Cookies und können diese nach Ihren Wünschen aktivieren oder deaktivieren. Davon ausgenommen sind solche Cookies, die für den Betrieb der Website unbedingt erforderlich sind. Bei einigen Cookies kann Ihr Erlebnis auf der Website und deren Betrieb beeinträchtigt werden, wenn Sie diese deaktivieren. Weitere Informationen finden Sie in unserer Cookie-Richtlinie.

Unbedingt (technisch) notwendige Cookies

Diese Cookies sind für das Funktionieren der Website unerlässlich und können in unseren Systemen nicht deaktiviert werden. Sie bilden im Allgemeinen die Grundlage solcher Aktionen, die Sie auf unserer Website durchführen können, also etwa Dienstleistungen bestellen, Ihre Datenschutzeinstellungen festlegen, sich Anmelden oder Formulare ausfüllen. Sie können Ihren Webbrowser so einstellen, dass er diese Cookies blockiert oder Sie auf sie hinweist, doch einige Teile der Website funktionieren nicht, wenn sie blockiert werden. Informationen zu Cookies

Analytische Cookies

Anhand dieser Cookies können wir die Besuche zählen und Traffic-Quellen bestimmen. Damit messen wir die Leistung unserer Website und können sie verbessern. Sie helfen uns herauszufinden, welche Seiten am beliebtesten und welche am wenigsten beliebt sind, und wir können sehen, wie sich die Besucher auf der Website bewegen. Alle von diesen Cookies gesammelten Daten werden aggregiert und sind daher anonym. Wenn Sie diese Cookies nicht zulassen, erfahren wir nicht, wann Sie unsere Website besucht haben. Informationen zu Cookies

Cookies an Dritte

Diese Cookies werden zur Analyse Ihrer Aktivitäten verwendet, um Ihnen personalisierte Werbung zu zeigen. Informationen zu Cookies

Akzeptieren Ablehnen Cookies konfigurieren Auswahl bestätigen
Suche
×
Anmerkungen
Suche
Keine Notizen
  • Homogeneous mixtures or solutions
  • Um Stift anzupassen, drücken Sie Alt + Pfeil nach unten
  • Um Textmarker anzupassen, drücken Sie Alt + Pfeil nach unten

    Thema ändern

    Fehler - Bitte überprüfen Sie Ihre Internetverbindung...
    Zurück

    Blink Help

    x
    Fehler - Bitte überprüfen Sie Ihre Internetverbindung...

    Wie können wir Ihnen helfen?

    Keine Ergebnisse

    Vollständiges Handbuch ansehen

    Sie konnten das Gesuchte nicht finden?

    Beschreiben Sie Ihre Frage so detailliert wie möglich. Geben Sie uns die Klasse, das Zugangsgerät, den Lizenzcode, den betroffenen Benutzer und Browser an oder ob es Ihnen in der App passiert:

    Dicke:
    Textgröße:
    Filter
      keine Ressourcen zugeordnet
      Textgröße:
      Überprüfungsmodus

      Überprüfungsmodus

      Homogeneous mixtures or solutions
      Matter in nature
      Ohne Hintergrundton
      Logo

       

      5. HOMOGENEOUS MIXTURES OR SOLUTIONS

      /useruploads/ctx/a/39367220/r/s/9531740/T14pyc2U4_05.00p85_.mp3?idcurso=737729Talking book

      Some mixtures are not easy to recognise because we can't see where each substance is. If we mix sugar and water, we know the sugar is there because we taste it, but we can't see it. This is a homogeneous mixture.

      In this example, we say that the sugar has dissolved in the water, which is why it is called a homogeneous mixture or solution. In a solution, the particles of all the substances are mixed together so well that it's impossible to distinguish them. All solutions have two components:

      • The solvent is the main component in a solution.
      • The solute is the other substance or substances in a solution, found in smaller quantities.

      The solvent and the solute can be found in any state of aggregation. The solvent is most often a liquid, usually water, in which case we talk about an aqueous solution. Here are some examples:

           
      image
         
      Solute Solvent Example
      Solid Liquid Water with sugar
      Liquid Liquid Water with alcohol
      Gas Liquid Fizzy drinks

       

      Although, as we said, solvents are often liquids, there are also solvents that are not liquid (they can be solid or gas). For example:

      • Air and natural gas. All the components are gaseous.
      • Alloys: solutions formed by two or more chemical elements of which one is a metal, such as bronze, steel or brass. All the components are solids.
        Weblink 3: Solute vs. solvent
      image
        Natural gas is a gaseous mixture.    
      image
        Brass is an alloy, where all the components are solid.    

       

       

      Key concepts
      • In a solution, the solvent is the substance found in greater quantity. The other substance is the solute.

      5.1. Calculating concentrations

      /useruploads/ctx/a/39367220/r/s/9531740/T15pyc2U4_05.01p86_.mp3?idcurso=737729Talking book

      To work with solutions, we need to know the proportion of the solute and solvent, that is, the concentration.

      The concentration of a solution indicates the quantity of the solute in a given quantity of a solvent or of a solution.

       

      5.1.1. Percent composition (by mass)

      /useruploads/ctx/a/39367220/r/s/9531740/T16pyc2U4_05.01.01p86_.mp3?idcurso=737729Talking book

      There are many ways to express a concentration but the easiest and most commonly-used one is the percent composition (by mass).

      The percent composition of a solute in a solution is the mass of solute found in 100 units of the mass of the solution. If we use grams as the units of mass:
      estilo tamaño 14px Percent espacio by espacio mass espacio paréntesis izquierdo solute paréntesis derecho igual fracción numerador mass espacio of espacio the espacio solute espacio paréntesis izquierdo normal g paréntesis derecho entre denominador mass espacio of espacio the espacio solution espacio paréntesis izquierdo normal g paréntesis derecho fin fracción multiplicación en cruz 100 fin estilo

       

      It's not necessary to work in grams. You just have to make sure to use the same units of mass in the numerator and denominator.

      The result will not have units because it is a percentage.

           
      image
      A sterling silver ring.
      /useruploads/ctx/a/39367220/r/s/9531740/T17pyc2U4_ContentBoxp86_.mp3?idcurso=737729Talking book
      1. To make a 925 sterling silver ring, a jeweller uses 15.73g of pure silver and 1.27g of copper. Calculate the percent composition of the solute in the alloy.

      First, we have to work out what the solute is and what the solvent is in the solution (alloy):

      • Solute → copper (in a lower proportion)
      • Solvent → silver (in a higher proportion)

      Next, we calculate the mass of the solution from the data:

      m (solute) = 1.27g
      m (solvent) = 15.73g
      m (solution) = m (solute) + m (solvent) = 1.27g + 15.73g = 17g

      Finally, we substitute our values in the equation for the percent composition of the solute:

      porcentaje espacio by espacio mass igual fracción numerador mass espacio of espacio the espacio solute espacio paréntesis izquierdo normal g paréntesis derecho entre denominador mass espacio of espacio the espacio solution espacio paréntesis izquierdo normal g paréntesis derecho fin fracción multiplicación en cruz 100 igual
igual fracción numerador 1.27 espacio normal g entre denominador 17 espacio normal g fin fracción multiplicación en cruz 100 casi igual a 7.5 porcentaje

      Therefore, 925 Sterling Silver always contains 92.5% of pure silver and 7.5% of another metal, usually copper, as in this case.

       

      5.1.2. Mass concentration

      /useruploads/ctx/a/39367220/r/s/9531740/T18pyc2U4_05.01.02p87_.mp3?idcurso=737729Talking book

      Another common way to express a concentration relates the amount of solute to the volume of the solution.

      The mass concentration (g/L) of a solute in a solution indicates the mass of the solute (in grams) that is dissolved in every litre of the solution:
      normal g dividido por normal L igual fracción numerador mass espacio os espacio the espacio solute espacio paréntesis izquierdo normal g paréntesis derecho entre denominador volume espacio of espacio the espacio solution espacio paréntesis izquierdo normal L paréntesis derecho fin fracción

       

      Remember the relationship that exists between units of capacity and volume: if we make a cube of 1 dm and we fill it up to the top with liquid, the volume of the liquid in the cube is 1 L. So:

      1 dm3 is equivalent to 1 L

       

      /useruploads/ctx/a/39367220/r/s/9531740/T19pyc2U4_ContentBoxp87_.mp3?idcurso=737729Talking book
      1.  . A student has to prepare an iodine alcoholic solution by dissolving 15g of iodine in alcohol to obtain a solution with a volume of 250mL. Calculate the mass concentration of the final solution.

      As in the previous example exercise, we first have to identify the solute and the solvent:

      • Solute → iodine (in a smaller quantity)
      • Solvent → alcohol (in a greater quantity)

      Next, given the grams of the solute (15g), we have to calculate the volume of the solution in litres:

      m (solute) = 15g
      V (solution) = 250mL = 0.25L

      Finally, we substitute these values into the mass concentration equation:

      normal g dividido por normal L igual fracción numerador mass espacio of espacio the espacio solute espacio paréntesis izquierdo normal g paréntesis derecho entre denominador volume espacio of espacio the espacio solution espacio paréntesis izquierdo normal L paréntesis derecho fin fracción igual fracción numerador 15 espacio normal g entre denominador 0.25 espacio normal L fin fracción igual 60 espacio normal g dividido por normal L

       

      Therefore, the solution will have a concentration of 60g/L.

       
      Key concepts
      • The mass concentration of a solution gives the quantity of solute in a certain quantity of a solution.
      • There are different ways to express the concentration: in percent composition (by mass) or in g/L.

      5.2. Preparing solutions

      /useruploads/ctx/a/39367220/r/s/9531740/T20pyc2U4_05.02p88_.mp3?idcurso=737729Talking book

      Physiological saline solution is made with sodium chloride (NaCl, otherwise known as salt) in water with 0.9% mass and is used a lot in hospitals. Here's how to prepare 100mL.

      image
      1. Calculate the mass of the solute (NaCl) that we need: to do this, we just have to remember that 0.9% solute means that for every 100 g of (saline) solution, there is 0.9g of NaCl.
       
      image
      1. Weigh the NaCl (0.9g) with a digital scale, using a beaker.
      image
      1. Add a little distilled water to the beaker (in this case about 20mL is sufficient). Stir well with a glass rod until it dissolves completely.
      image
      1. With a funnel, pour the solution you have just obtained into a graduated flask of the volume you need (100mL). Rinse the beaker a few times to get out all the remains of the NaCl.
      image
      1. Add water to the flask up to the mark. We use a dropper to reach the exact mark of volume required so that we don't go over. Put a top on the graduated flask and shake the contents well.

       

       

      Key concepts
      • In the process of making a solution, the particles of the solute spread out among the particles of the solvent.

      5.3. Solutions and the Kinetic Particle Theory

      /useruploads/ctx/a/39367220/r/s/9531740/T21pyc2U4_05.03p88_.mp3?idcurso=737729Talking book

      When we mix two substances to make a solution, the solute particles leave their original position and get distributed among the particles of the solvent; that way, the particles of the solute move in to occupy positions that were previously occupied by solvent particles.

      Weblink 4: Kinetic Particle Theory
      image
         

      Analyse

      1

      Activity 15

      2

      Activity 16

      3

      Activity 17

      4

      Activity 18

      Apply

      5

      Activity 19

      6

      Activity 20

      7

      Activity 21

      8

      Activity 22

      9

      Activity 23

      10

      Activity 24

       
      Homogeneous mixtures or solutions
      Matter in nature
      Ohne Hintergrundton
      Logo

      Activity 15

      Read the label on a bottle of mineral water. What solutes does it contain?

      Fertig
      Homogeneous mixtures or solutions
      Matter in nature
      Ohne Hintergrundton
      Logo

      Activity 16

      Name two non-liquid solutions that are not mentioned in your book.

      Fertig
      Homogeneous mixtures or solutions
      Matter in nature
      Ohne Hintergrundton
      Logo

      Activity 17

      Find out about the mixture of gases that make up natural gas.

      Fertig
      Homogeneous mixtures or solutions
      Matter in nature
      Ohne Hintergrundton
      Logo

      Activity 18

      Is the silver that jewellers use a pure substance or a mixture? What about 1, 2 and 5 cent coins? Use the Internet to find out.

      Fertig
      Homogeneous mixtures or solutions
      Matter in nature
      Ohne Hintergrundton
      Logo

      Activity 19

      Calculate the mass of acetic acid in 10 g of a commercial vinegar with a label indicating a percent composition of 6%.

      Acetic acid is the .

      Water is the .

      Mass of acetic acid = g

        solute solvent 0.6

      Fertig
      Homogeneous mixtures or solutions
      Matter in nature
      Ohne Hintergrundton
      Logo

      Activity 20

      Calculate the mass concentration in g/L of a solution that has 7 g of a pure substance in half a litre of water.
      Mass concentration = g/L
        14

      Fertig
      Homogeneous mixtures or solutions
      Matter in nature
      Ohne Hintergrundton
      Logo

      Activity 21

      In how many litres of water would we have to dissolve 100 g of salt to obtain a solution with a mass concentration of 5 g/L?
      In L of water.
        20

      Fertig
      Homogeneous mixtures or solutions
      Matter in nature
      Ohne Hintergrundton
      Logo

      Activity 22

      What is the mass concentration of a solution with 12 g of potassium chloride and 300 cm3 of water?
      Mass concentration = g/L
        40

      Fertig
      Homogeneous mixtures or solutions
      Matter in nature
      Ohne Hintergrundton
      Logo

      Activity 23

      What is the percent composition of sugar in water if it contains 30 g of solute in 600 g of water?
      % of sugar
        4.8

      Fertig
      Homogeneous mixtures or solutions
      Matter in nature
      Ohne Hintergrundton
      Logo

      Activity 24

      We know that the mass concentration of sodium chloride in a solution is 8 %. How many grams of sodium chloride is dissolved in 75 g of the solution?

      mass of NaI = g
        6

      Fertig

      ,
      Sie haben die Einheit beendet.

      Unten sehen Sie, wie viel Zeit Sie gebraucht und welche Punktzahl Sie erreicht haben.

      Zeit

      Punktzahl

      1. 1
      2. 2
      3. 3
      4. 4
      5. 5
      6. 6
      7. 7
      8. 8
      9. 9
      10. 10
      11. 11
        Radiergummi
        Rich-Text-Editor
        Schließen